O Tabuleiro de Xadrez
O Xadrez é um jogo de tabuleiro que se joga há muitos
séculos e com inúmeros apaixonados em todo o planeta. A ação desenrola-se num
campo de batalha onde intervêm dois exércitos. É um jogo de estratégia que
exige uma grande concentração e muito estudo, não dispensando a vivência de
grande número de experiências para desenvolver a eficácia.
Subsistem ainda dúvidas quanto à sua origem, mas prevalece a
teoria que aponta para a Índia como a terra da sua criação, por volta do século
VI. Recebeu o nome de Chaturanga, palavra que designa quatro partes do exército
indiano – bigas, elefantes, cavalaria e infantaria. Mais tarde, com a ocidentalização
do jogo, foram substituídas algumas das peças mas mantêm ainda correspondência
com as originais: as bigas ou carros são representados pelos Bispos, as Torres
representam os elefantes, os Cavalos e os Peões, naturalmente são a cavalaria e
a infantaria; o Rei, a peça mais importante, é o rajá, e a segunda peça mais
poderosa, a Rainha, representa o vizir.
Foi tão grande o fascínio que o jogo suscitou (e suscita)
que não podia deixar de originar várias histórias ou lendas. Tendo este jogo
uma grande ligação com a matemática, esta aparece desde logo numa das mais
interessantes lendas, precisamente sobre o Tabuleiro, um “campo de batalha” em
forma de quadrado, dividido em 64 (8x8) pequenos quadrados brancos e negros.
Assim, conta a lenda que…
Naquele tempo, estava o rajá Balhait da província indiana de
Taligana muito triste devido à perda do seu filho numa batalha, sendo
infrutíferas as inúmeras tentativas que os seus súbditos faziam para o animar. Com
tão grande depressão o rajá tornou-se pouco cuidadoso com a gestão do seu
reino.
Então um brâmane de
nome Lahur Sessa visitou o rajá para lhe apresentar um novo jogo que motivaria
e confortaria o seu senhor. Era um jogo de guerra, por ser a actividade onde é
de suprema importância a sabedoria, a persistência, a decisão e a coragem.
O rajá ficou muito entusiasmado com o jogo e acabou por
recuperar todas as suas capacidades. Consciente que a sua “cura” se devera ao
novo jogo, desejou compensar Sessa. Chamou-o e disse-lhe para escolher tudo o
que desejasse, pois o bem que lhe fizera não tinha preço.
O “modesto” Lahur Sessa respondeu-lhe que não queria grandes
riquezas. Contentar-se-ia com um simbólico pagamento em grãos de trigo sobre o
tabuleiro. Explicou: 1 grão sobre primeiro quadrado, mais 2 grãos sobre o
segundo quadrado, mais 4 grãos sobre o terceiro, mais 8 grãos sobre o quarto e
assim sucessivamente, sempre duplicando até ao sexagésimo quarto.
O rajá, considerando insignificante o pedido de Sessa,
insistiu para que este escolhesse uma recompensa mais adequada e valiosa, tendo
em conta o bem que lhe fizera. Mas Sessa foi irredutível, desejando apenas a
recompensa pedida.
O rajá mandou então entregar a Sessa um saco de trigo, na
convicção que seria mais do que suficiente para o pagamento. Mas Sessa recusou,
alegando não querer nem um grão a mais, nem um grão a menos do que a quantidade
que pedia.
Chamou o rajá os seus matemáticos para que calculassem o
número de grãos de trigo para entregar a Sessa.
Estes calcularam, calcularam, calcularam e… concluíram não
haver nos celeiros de toda a Índia trigo suficiente para atingir tal
quantidade! Nem todo o trigo do mundo seria bastante!
O número, com vinte algarismos, é o seguinte:
18.446.744.073.709.551.615
(18 triliões, 446 mil biliões,
744 biliões, 73 mil milhões, 709 milhões, 551 mil e 615 grãos)
correspondendo à soma dos termos da sequência das potências
de 2 desde 20 até 263, o que vem a ser o mesmo que
(2x2x2x2x…x2x2x2), 64 vezes, ao que se subtrai 1.
Ficou preocupado o rajá, cofiando as tranças das suas barbas.
Aquele Lahur Sessa era mais esperto do que parecia, mesmo muito esperto! Como
cumprir o prometido?
Tranquilizou-o Sessa, dizendo que já sabia ser impossível
pagar a sua recompensa, pois tal quantidade de trigo daria para cobrir toda a
superfície da Índia com uma camada de quase uma polegada de espessura!
Reconhecendo a inteligência de Sessa, o rajá nomeou-o seu
principal vizir.
E agora com um final
diferente…
O rajá subavaliou a inteligência de Sessa ao mesmo tempo que
sobreavaliou a sua riqueza. Mas o jogo fizera-lhe bem! Ele era afinal, um homem
muitíssimo inteligente e não podia permitir que Sessa o superasse. Teve uma
ideia brilhante e reuniu os sábios da sua corte. Rapidamente, mesmo com um
rudimentar ábaco, efectuaram os cálculos necessários. Com efeito os celeiros do
reino não dispunham de tão grande quantidade de trigo, mas isso ia deixar e ser
um problema.
Em vez de nomear Sessa seu mais poderoso vizir, o rei mandou
chamá-lo para liquidar a recompensa e disse-lhe:
- Pois bem, Sessa, acho que mereces a devida retribuição
pela criação do Chaturanga, portanto, dirige-te aos celeiros e podes começar a
contar o trigo que pediste!
Foi aí que Sessa empalideceu. O seu coração acelerou e o seu
cérebro fervilhou. Evocou todas as suas forças para se controlar. Como efeito
ou não do seu jogo, o rajá recuperara a sua boa condição de decisor!
- Tenho de declinar a tua oferta, afinal eu sou mesmo um
homem modesto e dispenso tão grande quantidade de cereal. Ficarei muito
satisfeito apenas com o cargo que me propuseste antes.
E assim, conta a lenda, teve a invenção do Chaturanga um
outro desfecho! Ambos os homens se confrontaram, inteligentemente, embora fora
do tabuleiro, porém sobre a sua matemática.
O que estaria escondido na proposta do rajá que Sessa tão
prontamente recusou?
Pois se Sessa se pusesse a contar os grãos, não excederia a
velocidade (média) de um grão por segundo, o que significa que, num único dia,
continuamente e sem interrupções, teria contado 86.400 grãos. Contar um milhão
levar-lhe-ia no mínimo dez dias de contagem contínua. Só para um metro cúbico
(um contentor em forma de cubo com um metro de aresta, equivalente a mil
litros) que contém aproximadamente quinze milhões de grãos, necessitaria de
cerca de meio ano do trabalho contínuo de contagem.
Rapidamente Sessa concluiu que não teria tempo de vida
suficiente para contar todos os grãos da sua recompensa.
por Carlos M M Nascimento
in
Bibliografia
Enzensberger, Hans
Magnus, (1997). El Diablo de los Números.
Madrid: Ediciones Siruela
Paulos, J. Allen, (1991). Inumerismo.
Lisboa: Publicações Europa-América
Paulos, J. Allen, (1993). O Circo
da Matemática, para além do inumerismo. Lisboa: Publicações Europa-América
Perelman, Y. I. , (1989).
Álgebra Recreativa. Moscovo: Editora
MIR
Perelman, Y. I. ,
(1979). Matemáticas Recreativas.
Moscovo: Editorial MIR
Sem comentários:
Enviar um comentário